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Abstract. We derive a compact Yennie gauge representation for the off-shell one-loop electron-photon
vertex, and discuss it properties. This expression is explicitly infrared finite, and it has proved to be
extremely useful in multiloop calculations in the QED bound state problem.

1 Introduction

As is well known the physical results in quantum electro-
dynamics (as in any gauge theory) are gauge invariant,
but the calculations themselves are gauge dependent. A
proper choice of gauge may greatly facilitate calculations
of radiative corrections in a specific problem.

In quantum electrodynamics gauge freedom is de-
scribed by the transformation of the photon propagator

Dαβ(q) → Dαβ(q) + qαχβ + χαqβ , (1)

where χα are arbitrary functions of momentum q .
While the full gauge invariant sets of diagrams which

describe the physical processes are gauge independent, the
individual diagrams and the complexity of calculations
strongly depend on the choice of gauge. The infrared safe
Yennie gauge [1,2] defined by the photon propagator

Dαβ(q) =
1

q2 + iε

(
gαβ +

2qαqβ

q2

)
(2)

is particularly well suited for the bound state problems,
where it greatly alleviates the notorious infrared difficul-
ties specific for such kind of problems (see, e.g., [3–7]).

There is no infrared photon radiation in the bound
state problems, and all infrared divergences should cancel
in the final results. The most useful technically feature of
the Yennie gauge, which is shares with the noncovariant
Coulomb gauge, is that the infrared behavior of the indi-
vidual diagrams is greatly improved in comparison with
the infrared behavior of the diagrams in other covariant
gauges. In particular many diagrams, which are infrared
divergent in other relativistic gauges (Feynman, Landau,
etc.), are infrared finite in the Yennie gauge. This fea-
ture of the Yennie gauge allows to perform explicitly co-
variant calculations without introducing an intermediate
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Fig. 1. One-loop vertex

infrared photon mass, which is inevitable in other com-
mon relativistic gauges. Thus the Yennie gauge combines
the nice infrared properties of the noncovariant Coulomb
gauge (see, e.g., [8,9]) with the advantages specific to the
explicitly Lorentz covariant gauges.

The Yennie gauge is widely used in the bound state
theory (see, e.g., [3–7], and references in [10]). In the
framework of dimensional regularization one- and two-
loop calculations in the Yennie gauge were discussed in
[11–14]. The Yennie gauge was extensively used in our pa-
pers on the one- and two-loop radiative corrections to the
bound state energy levels [6,7,15–18]. We have obtained a
compact infrared soft integral representation for the renor-
malized one-loop vertex in the Yennie gauge, which turned
out to be extremely useful in calculations. Below we will
derive this representation for the Yennie gauge vertex, and
discuss its main features.

2 Infrared finite bare vertex

General expression for the off-mass-shell one-loop vertex
in the Yennie gauge (see Fig. 1) has the form

Λµ(p, p− k) =
α

4π

∫
d4q

π2i

×γα(p̂+ q̂ +m)γµ(p̂+ q̂ − k̂ +m)γβ

D(p+ q)D(p+ q − k)
×Dαβ(q) , (3)
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where
D(p) = p2 −m2 + iε . (4)

We would like to obtain an integral representation for
the Yennie gauge vertex which is explicitly infrared finite.
Ultraviolet divergences in the Yennie gauge should be sub-
tracted as usual, and to this end it is convenient to have a
simple expression for the ultraviolet divergent term. Let us
first separate the ultraviolet divergent contributions. They
are generated by the large integration momenta q → ∞
in (3) when the Feynman and longitudinal parts of the
numerator may be written as

γα(p̂+ q̂ +m)γµ(p̂+ q̂ − k̂ +m)γα

� q2γµ � D(p+ q − k)γµ ,

2
q2 q̂(p̂+ q̂ +m)γµ(p̂+ q̂ − k̂ +m)q̂

� 2q2γµ � 2D(p+ q − k)γµ . (5)

We have represented the large terms in the numerator as
coefficients before the electron denominator D(p+ q − k)
in order to get rid of the k dependence in the ultraviolet
divergent contributions.

The Yennie gauge vertex is infrared finite, and we are
looking for such representation of the electron-photon ver-
tex where all would be infrared divergences cancel already
in the integrand. The most infrared singular terms in the
integrand in (3) correspond to the terms in the numerator
which do not contain the integration momentum q

γα(p̂+ q̂ +m)γµ(p̂+ q̂ − k̂ +m)γβ

� γα(p̂+m)γµ(p̂− k̂ +m)γβ . (6)

Separating the ultraviolet and infrared divergent contribu-
tions we write the integral representation for the Yennie
gauge vertex in (3) in the form

Λµ(p, p− k)

=
α

4π

∫
d4q

π2i

{
3γµH(0, 1, 1) + N1H(1, 1, 1)

+γα(p̂+m)γµ(p̂− k̂ +m)γβ

×
[
gαβH(1, 1, 1) + 2qαqβH(1, 1, 2)

]}
, (7)

where

N1 = 3q2γµ − 3D(q + p− k)γµ + γαq̂γµ(p̂− k̂ +m)γα

+γα(p̂+m)γµq̂γ
α

+2γµ(p̂− k̂ +m)q̂ + 2q̂(p̂+m)γµ

−(2q̂γµq̂ + q2γµ) , (8)

and

H(m, 1, n) ≡ {
Dm(q + p− k)D(q + p) q2n

}−1
. (9)

All ultraviolet divergent contributions in (7) correspond
to the numerators in (5), and are collected in the term

with the denominator H(0, 1, 1), which is independent of
the transferred momentum k, and depends only on the
external fermion momentum p. All potentially infrared
divergent contributions to the integral generated by the
Feynman and the longitudinal terms in the virtual pho-
ton propagator correspond to the numerator in (6), and
are collected in the last term with the square brackets in
the integrand in (7). All other terms in this integrand are
explicitly infrared finite since they either contain an extra
power of the virtual momentum q in the numerator, or
respective denominators are less singular at small q.

The final integral representation will be written in
terms of the combinations of external momenta which nat-
urally arise when we combine the Feynman denominators.
For example,

H(1, 1, 1) =
∫ 1

0
dx

∫ 1

0
dz

2x[
(q − xQ)2 − x∆

]3 , (10)

where
Q = −p+ kz , (11)

∆ = m2 − k2z(1 − xz) + 2pk(1 − x)z − p2(1 − x) . (12)
The ultraviolet divergent contribution generated by the
term with the denominator H(0, 1, 1) will be written in
terms of the degenerate function ∆0

∆0 ≡ ∆(z = 0) = m2x−D(p)(1 − x) . (13)

After the shift of the integration variable q → q+xQ we
obtain

Λµ(p, p− k) =
α

4π

∫
d4q

π2i

{
3γµH̄(0, 1, 1) + N̄1H̄(1, 1, 1)

+2x2N2H̄(1, 1, 2) + γα(p̂+m)

×γµ(p̂− k̂ +m)γα

×
[
H̄(1, 1, 1) +

(
q2

2
+ 2x2Q2

)
H̄(1, 1, 2)

]}

=
α

4π

∫ 1

0
dx

∫ 1

0
dz

{
3γµ ·

[
ln

Λ2

x∆0
− 1

]

−N̄1

∆
+ 2N2

x(1 − x)
∆2 + γα(p̂+m)

×γµ(p̂− k̂ +m)γα

×
[
− 1
∆

− 1 − x

∆
+

2x(1 − x)Q2

∆2

]}
, (14)

where Λ is the ultraviolet cutoff,

N̄1 = −3D(p− k)γµ + x

[
−6(p− k)Qγµ

+γαQ̂γµ(p̂− k̂ +m)γα + γα(p̂+m)γµQ̂γ
α

+2γµ(p̂− k̂ +m)Q̂+ 2Q̂(p̂+m)γµ

]

−x2
(
2Q̂γµQ̂+Q2γµ

)
, (15)

N2 = Q̂(p̂+m)γµ(p̂− k̂ +m)Q̂−Q2γα(p̂+m)

×γµ(p̂− k̂ +m)γα, (16)
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and function H̄(m, 1, n) is just the function H(m, 1, n)
after the shift of the integration momentum q → q+xQ.

The term with the numerator N2 in (14) is the price
we have to pay for the simple γ-matrix structure of the
last term in the square brackets in (14). The point is that
a more complicated matrix structure of the form Q̂(. . .)Q̂
arises naturally after the shift q → q + xQ. However,
the trivial structure proportional to Q2 greatly facilitates
consideration of the would be infrared divergences, and we
simply wrote infrared singular terms in the square brack-
ets in (14) in a convenient form, and collected the com-
pensating infrared safe terms in the numerator N2.

The contributions generated by the terms 1/∆ and
x/∆2 in the last square brackets in (14) are infrared diver-
gent on the mass shell at zero momentum transfer. Really,
these terms behave as 1/x if p2 → m2 and k = 0, and thus
are infrared divergent. In the Feynman gauge the vertex
itself is also infrared divergent under these conditions but
in the Yennie gauge infrared divergent contributions cor-
responding to the Feynman and longitudinal parts of the
photon propagator cancel each other. In order to cancel
these apparent infrared divergences we use the identity

∫ 1

0
dx

∂

∂x

{
x(1 − x)

∆

}

=
∫ 1

0
dx

{
1 − 2x
∆

− x(1 − x)Q2

∆2

}
= 0 , (17)

which may be easily proved with the help of the rela-
tion ∂∆/∂x = Q2. Applying this identity we see that
the infrared divergent contributions corresponding to the
Feynman and longitudinal terms in the photon propagator
cancel each other −1−(1−x)+2(1−2x) = −3x. Then the
sum of the would be divergent contributions is reduced to
the infrared safe form −3xm2/∆, which is finite on the
mass shell at zero momentum transfer.

After these transformations the Yennie gauge electron-
photon vertex may be written in a compact form

Λµ(p, p− k)

=
α

4π

∫ 1

0
dx

∫ 1

0
dz

{
3γµ

[
ln

Λ2

m2x2 − 1 +
D(p)
∆0

]

−N̄1

∆
− 3γα(p̂+m)γµ(p̂− k̂ +m)γα x

∆

+2N2
x(1 − x)

∆2

}
. (18)

3 Renormalization

As usual in QED to obtain the renormalized one-loop ver-
tex from the expression in (18) we use mass shell subtrac-
tion at zero momentum transfer. However, due to absence
of the infrared regularization the infrared finiteness of the
subtraction term is not guaranteed, and we should first
check that it is infrared finite. Consider asymptotic be-
havior of the vertex in (18) at ρ1 ≡ 1 − p2/m2 → 0,
ρ2 ≡ 1 − (p − k)2/m2 → 0 and small but nonzero mo-
mentum transfer squared k2. The largest contributions

to the vertex in this regime have the form k2 ln ρi, and
they are generated by the term with N2/∆

2 in the in-
tegrand in (18). Throwing away all contributions which
are at least linear in the virtualities of the electron lines,
i.e., terms of the form ρ1, ρ2, (p̂ − m) � −mρ1/2, and
(p̂− k −m) � −mρ2/2, we obtain

N2 � 4γµ

[
pk(−p2+pkz)+(pk)2z(−3+z)+p2k2z(1−z)

]
.

(19)
It is easy to see that k2 − 2pk → 0 at ρ1 → 0 and ρ2 → 0.
Then we substitute 2pk → k2 in (19), and preserving only
the leading in k2 terms we have

N2 � 2[1 + 2z(1 − z)]m2k2γµ → 8
3
m2k2γµ , (20)

where we have effectively integrated over z on the right
hand side. Integrating also over x we obtain

α

4π

∫ 1

0
dx

∫ 1

0
dz

2x(1 − x)N2

∆2

� 4α
3π

k2

m2 γµ

∫ 1

0
dz ln

1
(1 − z)ρ1 + zρ2

� 4α
3π

k2

m2 γµ ln
1

max(ρ1, ρ2)
. (21)

This asymptotic behavior demonstrates that the Yennie
gauge vertex admits subtraction on the mass shell without
any additional infrared regularization. The only subtlety
is that we first should put the momentum transfer squared
to be zero, and only then go on the mass shell.

Let us calculate the subtraction constant. The numer-
ator structures in (18) simplify at k = 0 and p̂ = m :

− N̄1 → 3x(2 + x)m2γµ , (22)

− 3xγα(p̂+m)γµ(p̂+m)γα → − 12xm2γµ , (23)

N2 → 0 , ∆ → ∆0 → m2x . (24)

Then the infrared finite subtraction constant may be easily
calculated

Λµ(m,m) = γµ
3α
4π

∫ 1

0
dx

×
{
ln

Λ2

m2x2 − 1 +
3x(2 + x)

x
− 12x

x

}

= γµ
3α
4π

(
ln

Λ2

m2 − 1
2

)

≡ γµ

(−1 + Z−1
1

)
. (25)

The final expression for the unrenormalized Yennie gauge
vertex is

Λµ(p, p− k) = γµ

(−1 + Z−1
1

)
+ ΛR

µ (p, p− k) . (26)

The ultraviolet and infrared finite renormalized electron-
photon vertex in the Yennie gauge has the form

ΛR
µ (p, p−k) =

α

4π

∫ 1

0
dx

∫ 1

0
dz

{
F

(0)
µ

∆0
+

F
(1)
µ

∆
+

F
(2)
µ

∆2

}
,

(27)
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where

F (0)
µ = 3γµD(p), (28)

F (1)
µ = 3γµ

[
D(p− k) + (2 − x)∆

]
− x

[
3γα(p̂+m)

×γµ(p̂− k̂ +m)γα − 6(p− k)Qγµ

+γαQ̂γµ(p̂− k̂ +m)γα + γα(p̂+m)γµQ̂γ
α

+2γµ(p̂− k̂ +m)Q̂+ 2Q̂(p̂+m)γµ

]

+x2
(
2Q̂γµQ̂+Q2γµ

)
, (29)

F (2)
µ = 2x(1 − x)

[
Q̂(p̂+m)γµ(p̂− k̂ +m)Q̂

−Q2γα(p̂+m)γµ(p̂− k̂ +m)γα
]
. (30)

It is not difficult to check cancellation of the infrared
finite renormalization constants Z1 and Z2 in the Yennie
gauge. The explicit expression for the one-loop self-energy
operator in the Yennie gauge is well known (see, e.g., [3,
6])

Σ(p) = δm +
(−1 + Z−1

2

)
(p̂−m) + ΣR(p) , (31)

where the renormalized self-energy operator has the form

ΣR(p) =
α

4π
(p̂−m)2

∫ 1

0
dx

−3 p̂ x
m2x−D(p)(1 − x)

, (32)

the mass renormalization is given by the expression

δm =
3α
4π

(
ln

Λ2

m2 +
1
2

)
, (33)

and the wave function renormalization constant has the
form

1 − Z−1
2 ≡ Σ

′
(m) = − 3α

4π

(
ln

Λ2

m2 − 1
2

)
. (34)

It is easy to see that the Ward identity is satisfied, and
the infrared finite renormalization constants Z1 and Z2
coincide

Λµ(m,m) = − Σ
′
(m) , Z1 = Z2 . (35)

4 Infrared and ultraviolet asymptotic behavior
of the Yennie gauge vertex

The integral representation for the Yennie gauge vertex
in (27) is most convenient for calculations of radiative
corrections, and the usual representation of the vertex in
terms of the Lorentz invariant form factors is neither nec-
essary nor calculationally useful. However, quite often in
the bound state problems one needs to treat separately
the terms in the vertex which have different asymptotic
behavior at small momentum transfer (see, e.g., [5,6]).
All terms in the Yennie gauge vertex besides the anoma-
lous magnetic moment contribution vanish at least as mo-
mentum transfer squared when k2 → 0. The anomalous

magnetic moment contribution is linear in the momentum
transfer, and it determines the asymptotic behavior of the
Yennie gauge vertex at small momentum transfer. It is
not difficult to identify the anomalous magnetic moment
contribution in (27). All terms which contribute to the
anomalous magnetic moment may be extracted from the
term with the numerator −N̄1 in (14)

−xγαQ̂γµ(p̂− k̂ +m)γα → −2x(1 − z)mσµνk
ν , (36)

−xγα(p̂+m)γµQ̂γ
α → −2xzmσµνk

ν , (37)

2x2Q̂γµQ̂ → 2x2mσµνk
ν . (38)

At small momentum transfer (k → 0) on the mass shell
(p2 = m2) the denominator ∆ → m2x, and the sum of
these terms generates the anomalous magnetic moment

− α

2π
σµνk

ν

2m
. (39)

Separating the anomalous magnetic moment we write the
renormalized one-loop vertex in the form

ΛR
µ (p, p− k) = Λ̃R

µ (p, p− k) − α

2π
σµνk

ν

2m
. (40)

The scalar factors before the tensor structures in Λ̃R
µ (p, p−

k) depend only on the momentum transfer squared k2 and
the electron line virtuality ρ = (m2 − p2)/m2. At small
momenta transfer and near the mass shell all entries in the
expression for Λ̃R

µ (p, p − k) are either linear in k2 and/or
ρ, or are proportional to the projector p̂−m on the mass
shell. At k = 0 we have

Λ̃R
µ (p, p) � − γµ

3α
4π

ρ � γµ
3α
2π

p̂−m

m
. (41)

According to the Ward identity

Λ̃R
µ (p, p) = − ∂ΣR(p)

∂pµ
, (42)

the small momentum transfer behavior of the vertex is
connected with the behavior of the self-energy operator
near the mass shell. The mass operator in (32) near the
mass shell p̂ → m is

ΣR(p) � − 3α
4π

(p̂−m)2

m
, (43)

and it is easy to see that the Ward identity near the mass
shell is satisfied.

We had used the Yennie gauge one-loop electron-
photon vertex ΛR

µ (p+ q, p+ q− k) from (27) as a subdia-
gram in two-loop calculations [16,17]. In such calculations
not only the infrared but also the ultraviolet behavior of
the one-loop vertex at −q2 → ∞ should be under control.
The dominant logarithmic contribution to ΛR

µ (q, q) is gen-
erated in this regime exclusively by the first term in the
braces in (27)

ΛR
µ (q, q) � −3α

4π
γµ ln

−q2

m2 . (44)
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All other contributions are nonlogarithmic. Ultraviolet be-
havior of the Yennie gauge vertex is no better than the
ultraviolet behavior in the Feynman gauge, and really the
contribution in (44) differs from the respective Feynman
gauge expression only by a multiplicative factor 3. As is
well known the ultraviolet vertex logarithm ln (−q2/m2)
does not arise in the Landau gauge, which is the most
convenient gauge for extracting the large ultraviolet loga-
rithms.

Let us consider in more detail behavior of the different
entries in the integrand in (27) at −q2 → ∞

F (1)
µ � −3(1 − x)2q2γµ + x(1 + x)

[
q2γµ + 2q̂γµq̂

]
, (45)

F (2)
µ � 2x(1 − x)q2

[
q2γµ + 2q̂γµq̂

]
, (46)

∆ � −(1 − x)q2 . (47)

It is easy to see that in this regime the finite integral

∫ 1

0
dx

{
F

(1)
µ

∆
+

F
(2)
µ

∆2

}

�
∫ 1

0
dx

{
2

−(1 − x)q2 +
2(1 − x)q2

(1 − x)2q4

}

×
[
q2γµ + 2q̂γµq̂

]
(48)

is a sum of two integrals over the Feynman parameter x
each of which diverges at x → 1. In calculations of the
two-loop radiative corrections we need to integrate this
expression over the momentum q. Then it is often conve-
nient and even necessary to consider the two terms in (48)
separately. Note first that the factor

[
q2γµ + 2q̂γµq̂

]
�

[
q2γµ +

2(−2)
4

q2γµ

]
(49)

vanishes after integration over q in the two-loop diagrams,
if all other factors in the integrand depend only on q2, but
this is often not the case. Then one needs to avoid the
spurious divergences at x → 1 by rearranging different
terms in (27) with the help of the identity in (17), which
we already used to improve the infrared behavior. After
transformations we obtain a slightly different representa-
tion for the renormalized vertex in the Yennie gauge

ΛR
µ (p, p−k) =

α

4π

∫ 1

0
dx

∫ 1

0
dz

{
F

(0)
µ

∆0
+

F̃
(1)
µ

∆
+

F̃
(2)
µ

∆2

}
,

(50)
where

F̃ (1)
µ = F (1)

µ + 2(1 − 2x)
[
q2γµ + 2q̂γµq̂

]
, (51)

F̃ (2)
µ = F (2)

µ − 2x(1 − x)Q2
[
q2γµ + 2q̂γµq̂

]
. (52)

The transformation of the numerator structures in (51)
does not change the infrared behavior of the vertex. Which
of the representations (27) and (50) to use in calcula-
tions of the two-loop corrections depends on the nature

of the two-loop diagram. For example, in calculation of
the contributions of order α2(Zα)5 generated by the dia-
grams with the vertex insertions in the ultraviolet diver-
gent skeleton diagrams (see e.g., diagrams (i,m, o) in [16,
17]) the representation in (50) is more convenient. On the
other hand, the representation in (27) is more convenient
for calculation of the contributions generated by the dia-
grams with the vertex insertions in the ultraviolet finite
skeleton diagrams (see, e.g., diagrams (j, n) in [16,17]).

5 Discussion of results

In this paper we have described derivation and properties
of a compact representation (27) for the off-shell one-loop
electron-photon vertex in the Yennie gauge, which is con-
venient in multiloop calculations. In practice of such cal-
culations one usually treats different terms in the integral
representation of the electron-photon vertex separately.
Hence, it is not sufficient to have a vertex with overall
smooth asymptotic behavior but it is important to have
well behaved individual terms in the integral representa-
tion for the vertex. We have specifically tailored these in-
dividual terms in such way that they are described by the
well behaved finite integrals both in the infrared and ultra-
violet regions. Respective integrals were briefly discussed
above, because control of their behavior is absolutely cru-
cial for successful applications when the one-loop vertex
plays the role of a subdiagram in multiloop diagrams (see,
e.g., [16,17]).

One- and two-loop renormalization in the Yennie gauge
was considered earlier by G.Adkins [11–14]. In the frame-
work of dimensional regularization he had obtained inter-
esting integral representations for the Yennie gauge one-
loop electron-photon vertex [11,13], which differ from the
representations considered above. One-loop electron-
photon vertex in an arbitrary gauge was also calculated
in terms of elementary functions and dilogarithms in [19].
The goal of [19] was quite different from the aim of this
work, namely to obtain a representation of the one-loop
vertex suitable for nonperturbative generalizations. The
vertex obtained in [19] was written as a sum of longitudi-
nal and transverse parts which were further decomposed
into sums of different spinor structures. Such represen-
tation is very convenient as a starting point for nonper-
turbative studies. However, separate analytic terms in [19]
which explicitly contain the gauge parameter and are writ-
ten in terms of the elementary functions and the Spence
function are infrared singular. The would be infrared sin-
gularities of separate entries cancel only in the sum of
these terms. This is precisely the feature we tried to avoid
in the representation above cancelling the would be in-
frared singularities at the level of the integrands. This fea-
ture of the representation in (27) is extremely important
for the applications to the bound state problems which we
have in mind and partially discussed above. Direct com-
parison between the vastly different representations of the
one-loop vertex in (27) and in [11,13,19] is greatly im-
peded by the complicated nature of these representations,
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it could be a subject of a special investigation which we
would not attempt here.

The integral representations for the Yennie gauge
electron-photon vertex in (27) and (50) were extensively
used in our calculations of radiative corrections of order
α2(Zα)5 to hyperfine splitting and Lamb shift [16,17],
and in calculations of radiative-recoil corrections of or-
der α(Zα)5(m/M) to the Lamb shift [18]. Soft infrared
behavior in the Yennie gauge greatly facilitates the calcu-
lations. For example, almost all of the nineteen diagrams
with two radiative photon insertions in the electron line
and two external photon lines in [16,17] are infrared di-
vergent in the Feynman gauge. In the Feynman gauge cal-
culations of the radiative corrections of order α2(Zα)5 to
hyperfine splitting and Lamb shift induced by these di-
agrams are greatly impeded by the infrared divergences
though attainable [20–22]. Due to absence of the infrared
divergences in the Yennie gauge and convenient form of
the vertex in (27) and (50) the results of our calculations
of the same contributions are about two orders of magni-
tude more accurate than the results in [20–23]. We hope
that the Yennie gauge off-shell electron-photon vertex in
(27) and (50) will find further useful applications.
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